Physical properties of Escherichia coli spheroplast membranes.

نویسندگان

  • Yen Sun
  • Tzu-Lin Sun
  • Huey W Huang
چکیده

We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The application of the Escherichia coli giant spheroplast for drug screening with automated planar patch clamp system

Kv2.1, the voltage-gated ion channel, is ubiquitously expressed in variety of tissues and dysfunction of this ion channel is responsible for multiple diseases. Electrophysiological properties of ion channels are so far characterized with eukaryotic cells using the manual patch clamp which requires skilful operators and expensive equipments. In this research, we created a simple and sensitive dr...

متن کامل

Improving Hydrophilicity of Polyethersulfone Membrane Using Silver Nanoparticles for Humic Substances Removal

Silver-impregnated membrane was facilely prepared by ex situ silver nanoparticles (NPs) blending method using polyethersulfone (PES) as the base polymer. A total of three membranes [F1(S0), F2(S0.5) and F3(S2.0)] were fabricated at different weight percentages of polymer and silver (Ag) loadings to compare their effects on membrane morphological and performance properties. All membrane types we...

متن کامل

Autolytic mechanism for spheroplast formation in Bacillus cereus and Escherichia coli.

Mohan, Raam R. (Warner-Lambert Research Institute, Morris Plains, N.J.), Donald P. Kronish, Roland S. Pianotti, Ray L. Epstein, and Benjamin S. Schwartz. Autolytic mechanism for spheroplast formation in Bacillus cereus and Escherichia coli. J. Bacteriol. 90:1355-1364. 1965.-Spheroplasts of Bacillus cereus strain T and Escherichia coli B were prepared by incubating early log-phase cells in appro...

متن کامل

Secretion of alkaline phosphatase subunits by spheroplasts of Escherichia coli.

Under conditions that permitted continued protein synthesis, spheroplasts of Escherichia coli were unable to form active alkaline phosphatase, although they synthesized protein that was antigenically related to alkaline phosphatase subunits. This cross-reacting protein was primarily detected in the medium of the spheroplast culture, and it had properties that closely resembled those of the alka...

متن کامل

Mode of Action of Antimicrobial Peptides on E. coli Spheroplasts.

We investigated the phenomena of antimicrobial peptides (AMPs) directly attacking the cytoplasmic membranes of Escherichia coli spheroplasts. We developed a procedure for fluorescence recovery after photobleaching to examine dye leakage through bacterial membranes as AMPs in solution bound to the membranes. We found that the AMP binding did not increase the apparent membrane area of a spheropla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2014